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ABSTRACT

Higher-order modal methods for predicting thermal and

structural response are evaluated. More accurate methods or ones

which can significantly reduce the size of complex, transient thermal

,rod structural problems are desirable for analysis and are required

for synthesis of real structures subjected to thermal and mechanical

loading. A unified method is presented for deriving successively

higher-order modal solutions related to previously-developed,

lower-order methods such as the mode-displacement and mode-

acceleration methods. A new method, called the force-derivative

method, is used to obtain higher-order modal solutions for both

uncoupled (proportionally-damped) structural problems as well as

thermal problems and coupled (non-proportionally damped)

structural problems. The new method is called the force-derivative

method because, analogous to the mode-acceleration method, it

produces a term that depends on the forcing function and additional

terms that depend on the time derivatives of the forcing function.



The accuracy and convergence history of various modal methods

are compared for several example problems, both structural and

Ihermal. The example problems include the case of proportional

damping for: a cantilevered beam subjected to a quintic time-

varying tip load and a unit step tip load and a multispan beam

subjected to both uniform and discrete quintic time-varying loads.

Examples of non-proportional damping include a simple two-degree-

of-freedom spring-mass system with discrele viscous dampers

subjected to a sinusoidally varying load and a multispan beam with

discrete viscous dampers subjected to a uniform, quin_ic time-

varying load. The last example studied is a transient thermal

problem of a rod subjected to a linearly-varying, tip heat load.

The higher-order modal methods are shown to converge to an

_lccurate response using fewer eigenmodes than lower-order modal

methods. The force-derivative method is very effective in

representing the response of the important, but otherwise neglected,

higher modes for structural problems in which there are a large

number of closely-spaced frequencies (e.g., a multispan beam or a

large area truss-type structure). However, for response times close

to discontinuities in the forcing function and/or its derivatives, the

mode-acceleration or force-derivative methods must include

appropriate jump conditions or additional modes to insure accuracy.

The higher-order modal methods are also effective in solving

transient thermal problems efficiently.
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Chapter 1

Introduction

Transient thermal and structural analysis of complicated

cngineering problems which are modeled as discrete multi-degree-of

freedom systems often require the solution of very large systems of

equations. The accurate solution of very large systems of coupled

differential equations may be difficult and computationally

expensive. In addition to calculating the transient response,

optimization of the structure under transient thermal and mechanical
=,

loading may be necessary. Automated structural design requires

numerous solutions of the coupled system of equations to assess the

effects of changes in design parameters on response quantities and

constraint boundaries. Since the problem is transient, continuous

constraint boundaries in time have to be approximated, often

requirJng many discrete times to be used to approximate the

constraint boundaries and ensure that the critical times when the

maximum response occurs are properly represented. Automated



design of even moderate-size problems can become intractable when

designing for transient loading conditions. Hence, reducing the size

of such systems is highly desirable from the standpoint of increased

compulational efficiency. Some of the many methods for reducing

the size of discrete multi-degree-of-freedom structural dynamic

systems include mass condensation methbds (e.g., refs. 1 to 7) and

reduced basis methods (e.g., refs. 8 to 15).

The mass condensation methods typically reduce the size of the

dynamic system of equations by condensing out less-important

degrees of freedom from the problem. One of the most popular

methods, proposed by Guyan (ref. 1), assumes the relationship

between the dependent and independent degrees of freedom can be

determined by the static relationshi p between them. Other mass

condensation methods either approximate a relationship between

dependent and independent degrees of freedom of the dynamic

system (ref. 7) or solve exactly for this dynamic relationship (ref. 3).

To achieve reasonably accurate results, the set of dependent

degrees-of-freedom must be chosen carefully or some of the lower

frequencies in the eigenspectrum may be lost. It was also shown in

reference 7 that large errors can occur when Guyan reduction is used

to expand the mode shapes and calculate forces. Modified mass-

condensation methods have been developed to help reduce these

deficiencies (refs. 3, 6, and 7). An attempt to extend the Guyan

reduction method to transient thermal analysis (ref. 16) resulted in

tile conclusion !hat a crude thermal finite-element model (having

fewer degrees of freedom than the model reduced using Guyan

2



reduction) produced results as good as or, in most cases, better than

those obtained using Guyan reduction.

The reduced basis methods, on the other hand, use an expansion

theorem (ref. 17, pp. 90-91) and a reduced set or subset of linearly

independent basis vectors to approximate the transient response.

These methods use either a truncated set of complete basis vectors

(e.g., eigenmodes (ref. 18), Ritz vectors (ref. 8), or Lanczos vectors

(ref. 19)) or a combination of basis vectors (e.g., eigenmodes and Ritz

vectors (ref. 14). When a reduced basis method is based on the

eigenmodes of the system, the method is referred to as a modal

method. One of the first reported uses of eigenmodes to reduce the

size of a problem and calculate the dynamic response of an elastic

structure was by Biot and Bisplinghoff (ref. 18). In that classic paper,

the authors recognized that the transient, linear response of

structures can be calculated by a superposition of the natural

oscillations or modes since the eigenmodes are orthogonal and

linearly independent and form a complete set (this method is herein

referred to as the mode-displacement method (MDM)). In addition,

for linear dynamic problems without damping or for proportionally-

damped problems, the equations of motion of a multi-degree-of-

freedom system uncouple and can be solved individually as single-

degree-of-freedom systems.

The usefulness of any reduced-basis or mode-superposition

method lies in its ability to predict accurately the transient response

using only a small number of basis vectors or modes. The need for

only a small number of basis vectors for an accurate response is



especially well-suited for modal methods, where it is

computationally expensive to calculate the eigenvectors or modes of

large systems as compared to other, less expensive reduced basis

methods, which use Lanczos vectors (ref. 19) or Ritz vectors (ref.

14). Toward this end, the MDM has proven useful in calculating

transient structural displacements for most dynamic structural

problems, using only a small percentage of the lower frequency

mode shapes.

The MDM can be considered to be a generalization of a Fourier

series approximation. It is well known that Fourier series

representation of discontinuous functions converge slowly, and that

the derivatives of the series may not converge at all. This type of

convergence problem is known as the Gibbs phenomenon (ref. 20).

Hence, the MDM can be expected to converge slowly when the

applied loads exhibit discontinuities in time or space. This slow

convergence is exhibited in the transient response problem of a

string with a point load (ref. 21), and other examples (e.g., refs. 22

and 23). The MDM is also less accurate in predicting transient

stresses (refs. 9 and 24) and, hence, requires more modes to obtain

converged accurate stresses. This decreased accuracy in predicting

stresses is understandable since the stresses are related to the

spatial derivatives of the displacement vector and, hence, errors in

the displacements become magnified upon differentiation. In

addition, some structural problems which have closely-spaced

natural frequencies, such as large area space structures or multispan

beams, experience very slow convergence and require a large

4



number of modes to predict even the displacement response

accurately.

The mode-acceleration method (MAM) was developed as a means

to improve the convergence of the MDM. The origin of the method is

attributed to Williams (ref. 25), but as pointed out by de Veubeke

(ref. 9), the original concept was stated by Lord Rayleigh (ref. 26) as

early as 1877. Lord Rayleigh noticed that when the periods of the

forces operating on a system are long relative to the free vibration

periods of the System, the inertial forces of the system can be

neglected. The MAM was popularized by Craig (ref. 27) in 1981 and

put into a more familiar form. The MAM improves the low-

frequency or pseudo-static response convergence because it

incorporates, as a separate term, the pseudo-static response in the

solution which approximates, to some degree, the flexibility of the

higher modes which are neglected in the modal summation. Maddox

(ref. 24) indicates an improved accuracy in dynamic force

calculations using a MAM-type approach as compared to the MDM

approach. Hansteen and Bell (ref. 28) indicate that the inaccuracies

of modal truncation in the MDM can be caused by components of the

load which are orthogonal to the eigenmodes included in the solution

and show that Maddox's proposal is equivalent to the inclusion of an

approximate expression for these components of the load.

Anagnostopoulos (ref, 29) indicates deficiencies in both the MDM and

MAM in calculating forces and stresses in offshore structures when

subjected to earthquake-type loading. Leger and Wilson (ref. 30)

compare the numerical efficiency of several forms of the MAM as



presented in references 28 and 29. An in-depth comparison of the

MDM and MAM methods (ref. 11) indicates that the MAM converges

to an accurate solution with fewer modes than the MDM. This study

includes a comparison of the effect of proportional damping level and

load frequency on the relative accuracy of the response using the

MDM and MAM methods.

Attempts at using mode-superposition methods to solve transient,

linear thermal problems (refs. 31 to 35) have been unsuccessful

because thermal problems exhibit a wide spectrum response where

very high frequencies are excited and, hence, a prohibitively large

number of "thermal modes" are necessary for an accurate solution.

The use of "thermal modes" was first suggested as a solution to

transient thermal problems by Biot in reference 36. In that paper,

Biot develops an analogous MDM solution and also includes what is

analogous to a MAM solution for a plate with one edge insulated and

the other edge suddenly brought to constant temperature.

..... , : : =

The work of Ramberg (ref. 37) reveals that the MAM can be

derived from the MDM by integrating the convolution integral

portion of the solution by parts once with respect to time. Leung

(ref. 12) improves the convergence of the MAM for undamped

systems by integrating the convolution integral several more times.

A similar method for developing highly convergent modal solutions

to linear dynamic structural problems was suggested by Likhoded

(ref. 38), which the author calls "multiple extractions of the pseudo-

static component". Likhoded presents a recursive technique for

developing higher-order or faster-convergent modal solutions.

6



Borino and Muscolino (ref. 39) developed a modal method, called the

dynamic-correction method (DCM), which separates the

homogenuous and complementary solutions of the transient

response. The DCM assumes that the transient response at time, t,

can be considered as the sum of a pseudo-static response or

particular solution, which depends on the load at time, t, plus a

dynamic correction which takes into account the dynamic solution

due to the loads from the initial time to time t.

The present study extends the work of Leung (ref. 12) by

developing a unified method (refs. 13 and 40) for deriving higher-

order modal methods which are general in that they: (1) are easy to

implement into existing computer programs, (2) can represent

proportional as well as non-proportional damping, and (3) can be

extended to solve transient, linear heat transfer problems. The

newly developed method is called the force-derivative method (FDM)

because, analogous to the MAM, the FDM produces a term which

depends on the forcing function and additional terms which depend

on the time-derivatives of the forcing function (ref. 13). These

additional terms produce successively higher-order approximations

to the contributions of the higher modes which are neglected in the

modal summation.

The effects of various factors on the rate of convergence or

accuracy of the various modal summation methods is investigated.

These factors include: the differentiability of the forcing function, the

frequency of the forcing function, the level of damping, and the time

at which the response is calculated. The forcing functions were
7



chosen to illustrate the effect of a temporally continuous forcing

function which has continuous higher derivatives, a discontinuous

forcing function (a unit step function), a spatially continuous loading

distribution, and a spatially discontinuous loading. Structural

problems include both proportional and non-proportional dampingas

well as the effect of discrete dampers. A quintic function of time was

selected to illustrate what happens when the force or one of its

derivatives vanish at some point in time. The convergence for a

sinusoidai forcing function is also studied.

A series of numerical examples has been selected to illustrate the

adequacy and/or inadequacy of each method. The examples, which

assume proportional damping, are: (1) a uniform cantilevered beam

subject to a quintic time-varying tip load, and a unit step tip load

and (2) a multispan beam (10 equal-length spans) subjected to both

uniform and discretely applied, quintic time varying loads. Examples

assuming non-proportional damping include: (1) a simple two-

degree-of-freedom spring-mass system with discrete viscous

dampers subjected to a sinusoidally varying load on one of the

masses, and (2) a multispan beam with discrete viscous dampers

subjected to a discrete, linearly-varying load. In addition, the

suitability of using higher-order modal methods to solve transient,

linear heat transfer problems is investigated. The last problem

studied is a rod heated at one end by either a step tip heat load or a

linear time-varying heat load while the other end is maintained at a

uniform temperature.



A method for developing higher-order modal methods which

mathematically unifies previously developed improved modal

methods (refs. 10 to 12, 38, and 39) is presented in Chapter 2.

Methods for solving proportionally and non-proportionally damped

systems of equations using both damped and undamped eigenmodes

are presented. The first-order, damped-mode formulation of the

equations of motion is especially suited for solving transient heat

transfer problems. Two different error norms are used to evaluate

the various methods and are presented in Chapter 3. Analytical

results are divided into two separate chapters, one for Structural

Analysis (Chapter 4) and another for Thermal Analysis (Chapter 5).

A summary and conclusions are given in Chapter 6.

9



Chapter 2

Unified Derivation of Modal Methods

As mentioned in the introduction, there have been many modal

summation methods and forms of implementation of such methods

presented in the literature (e.g., refs. 3, 9, 10-12, 14, 18, 24, 25, 28,

29-31, 36, 38, and 39). The present chapter will describe a unified

method for deriving the simplest or zeroth-order form of the modal

summation methods, the mode-displacement method (MDM). The

method will be shown to be useful for deriving higher-order

methods such as the mode-acceleration method (MAM) (which will

be shown to be a first-order method). This unified method, which is

herein called the force-derivative method (FDM), can be developed in

two forms, a first-order or damped-mode formulation which

operates on the equations of motion in first-order form and a

second-order or natural-mode formulation which operates on the

equations of motion which are in a second-order form. The former

10



uses the damped system eigenvalues and eigenvectors, whereas the

latter uses the natural modes and eigenvalues of the system. In

addition, alternate forms of the above-mentioned formulations are

presented which are easier to implement into existing computer

programs.

2.1 First-Order or Damped-Mode Formulation

The equations of motion, in matrix form, of an n-degree-of-

freedom system, together with the initial conditions, are given by

M ii + Cu + K u = Q(t) (1)

u(0) = u0, 6(0) = fi0

where M, C, and K are the mass, damping, and stiffness matrices of

the system; u and Q are the displacement and load vectors,

respectively, and a dot denotes differentiation with respect to time.

11



Transforming eq. (1) into first-order form results in the following

system of equations:

_9+Rv=Q v(o) = Vo (2)

where

and

, 0 K ,_,'I= M C

Uo

Assuming a solution to the homogeneous form of eq. (2) as:

0trt
Y(t) = e _r (3)

results in an eigenvalue problem

O_rlfl _r + R _r = 0. (4)

12



The eigenvectors (_r)are normalized such that

1

_r 1VI_r = 1.0

and then

T

@r _ @r = -°_r

Equation (5) can also be written in matrix form as

(5)

[*]_ [<I']: [,] _,._[*]¥ [*] : -[_]

where [_] is a 2n-by-2n modal matrix with its ith column equal to

_r and [o_] is a diagonal matrix consisting of the O_r'S.

A solution to eq. (2) is assumed in the form of the following modal

summation

211

Y(t)= _r Zr(t)

r= 1

(6)

13



T

Substituting eq. (6) into eq. (2) with premultiplication by Or

results in the following, uncoupled, system of equations:

T

Zr- O_r Zr = Or O

T

Zr(0) = Zro = Or M Yo

(7)

The solution to eq. (7) is

1

_r t _eO_r(t-%) Tzr(t) = Zro e + O r Q(l:)d'l:

0

Hence, the solution of eq. (2) becomes

(8)

2n

E[ ' 1art feO_r(t-_)Fr(1;)dl;j (9)Y(t) = • Z e +
r ro 0

r= 1

where

T

Fr(x) = OrOO:)

If the forcing function has continuous derivatives, the convolution

integral of eq. (9) can be integrated by parts to produce higher-order

14



modal methods (ref. 13). For example, if it is integrated by parts

once, the following expression results

2n

Y(t) = (Dr Zr° + Of,--_

r=l

O_rt _ rFr(t)
e -

O_r

!

O r ;e°_r(t-_)l_r(,i:)d_)
+O_rd

(10)

If all the modes are used in the second-to-last term in eq. (10),

this term can be written as

211

r=l

[_.][ T_ 1=-[*] _] Q(t)=K Q(t)

since from eq. (5)

=-1o_1 or [*] g_ [.]-T=_

T

Pre- and post-multiplying eq. (lib)by [_] and [(I)] ,

respectively, leads to

(lla)

(llb)

R =-[ml Ira]

where is a diagonal matrix whose elements are O_r

(1 lc)
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If equation (1 !) is substituted into equation (10), the resulting

expression can be written as

2n

Fr(0 ) art _ ar(t-'l:).
Y(t) = (l_r Zro + -- e + r Fr(X)d _

O_r J O_r 0

r= 1

-1

+K Q(t) (12)

If the forcing function has continuous derivatives up to order N-1

(C N-i continuity), the convolution integral of eq. (9) can be integrated

by parts N times, resulting in the following expression:

2n

_ "CDf _ (i-l)] je
Fr___) ./e _ r t + _r _r(t-'l;)p-(N)(,l:)d _Y(t) = _ Zro +

i=l , rj
r= 1

N

E (i-l)]
U,r J

i=l

(13)

where the superscript (i-l) denotes the (i-1)th derivative with

respect to time.
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If all the modes are used in the last N-terms of eq. (13), these

terms can be represented as functions of l_I and K (ref. 40) as follows

12 }.* <i-I)-] ,
i=l O_r 3 O_r

r=l

N

Z( -1 'i-I -1(i-1)lK Q(t)+ -K M/
i=l

(14)

2.2 Alternate Damped-Mode Formulation

Equations 8 to 14 are analogous to those presented in reference

13. However, the present expressions solve a first-order system of

equations, using the damped modes, _r, to decouple a non-

proportionally damped system (the damping matrix is not a linear

function of the mass and stiffness matrices). The first-order system

of equations is twice as large as the second-order system. Equation

14 represents a means for developing higher-order modal methods

than either the MDM or MAM. This method is called the force-

derivative method (FDM) (refs. 13 and 40) because it produces terms

which are related to the forcing function and its time derivatives.

17



Equation 2 can also be considered to represent a heat conduction

problem where, for that problem, M represents the capacitance

matrix, !_ represents the conductance matrix, (_ represents the thermal

load vector, and Y is the vector of nodal temperatures.

The MDM uses a subset, m (m < 2n), of the eigenmodes to reduce

the size of the problem and solves for Zr using eq. (8) (or simply by

numerically integrating eq. (7)) and substitutes these values into a

reduced modal summation in eq. (6) to approximate the response,

Y(t). The MDM can be classified as a zeroth-order method because it

is equivalent to using the FDM (eq. (14)) with N = 0. An analogous

form of the MAM uses eq. (12), and a reduced modal summation to

approximate Y(t) and can be classified as a first-order method

(N -- 1 in eq. (14)). The FDM uses eq. (14) with N > 1. (Results

presented in this study assume N - 4 when referring to the FDM

method). Reference 13 showed that the expressions obtained using

the FDM offer improved approximations to the contributions of

higher, neglected, modes for several structural problems.

The FDM (eq. (14)) can be derived using an approach similar to

that used in reference 39 which results in a form which is more

suitable for inclusion into existing thermal and structural analysis

codes. A numerical approach can be derived, similar to that

presented in reference 39, which approximates the forcing function

as a piecewise differentiable polynomial and which numerically

integrates the reduced system of equations (eq. (8)). For example,

18



assuming the forcing function is CO continuous; eq. (7) could be

rearranged as shown

T_ 1
1 D r Q(t) +--Zr (t) (16)

Zr(t) = " o_----r o_r

Using eqs. (6), (11), and (16), the response can be written as

2n

-1 Z_ 1Y(t) = K Q(t) + r--_r Zr (t)

r= 1

(17)

The last term can be evaluated using eq. (8) and Leibnitz's rule for

differentiation of an integral to produce the following:

t

T_ art _, O_r(t-qT) T
Zr (t)= _rQ(t) + O_rZro e + O_ra,-, _r Q('l:)d'l;

0
(18)

Y(t) can be approximated using only a subset of the modes for the

last term in eq. (17), and using eqs. (8) and (18), eq. (17) becomes

Y(t) (_-1 A I_T_= + CD _" )Q(t) + _(t) (19)
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A-I
where the ^ denotes a reduced set of modes (m < 2n), 0t represents

a diagonal matrix consisting of a reduced number of eigenvalues

O_r-l , and Z(t) can be calculated by either numerically integrating

eq. (7) or by using an analytic expression, when applicable, for a

given forcing function. Equation 19 is an alternate form-of the MAM.

If the forcing function can be assumed to be C 1 differentiable,

eq. (7) can be differentiated once with respect to time and re-

arranged as shown below:

in

T 1
_1-- i:l) r Q(t) +-- Zr (t) (20)

Zr(t) =- OCr O_r

Re-arranging eq. (7) and substituting for };r from eq. (20) results

T 1 T • 1
l-J--- • r Q(t) - 2 _r Q(t)+--2 Zr (t) (21)

Zr(t) = - ot r °tr °_r

Using eqs_ (5i and (6), the response can be written as

-I -1 -1 .

YCt) = K Q(t) -K MK Q(t) +

2n

_r
r=l

(22)

where the second term in eq. (21) is determined using eq. (11) and it

is assumed that the modes can be normalized as shown by eq. (5).
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The last term in eq. (22) can be evaluated using eq. (8) and

Leibnitz's rule for differentiation of an integral to produce the

following:

T T.

Zr (t) = ¢/,r_rQ(t) + ¢_rQ(t) +
1

2 art O_2 _e0_r(t-X)_T r¢_r Zro e + C_('_)d't
0

(23)

Once again, Y(t) can be approximated by using a subset of the

modes for the last term in eq. (22), and using eqs. (8) and (23), eq.

(22) becomes

^ l' 'Y(t)-= + • _ Q(t) + K MK . ) (_(t)

+ _(t) (24)
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If a C2 differentiable forcing function is assumed, eq. (7) could be

differentiated twice and a procedure, similar to that outlined by

eqs. (20) to (24), would produce the following expression:

Y(t) -=(K-1 A _-1 T) I -! -1+ _ _ Q(t) + K MK A A-2_T ]+ 0 O_ + QCt)

-IMK-I -1 A A-3AT ).. A+ MK +_ c_ qj c_ _ _,,_(t + 2Z(t) (5)

This expression for Y(t) shown by eq. (25) can be expanded, by

assuming the forcing function is C N differentiable, to give

N+I

y(t) = E[(I K 1/_,l)i- l R -1

i=l

A A-i ^T_ _(_t)l ) ] AA
+_ o_ • ) +_Z(t) (26)

Compared to eq. (14), the alternate formulation of the FDM (eq.

(26)) does not require the solution, of a convolution-type integral. In

addition, the last term of eq. (26) is identical to a mode-displacement

solution and, as such, the form of the FDM as given by eq. (26) is

more suited for inclusion into existing computer codes.
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2.3 Second-Order or Natural-Mode Formulation

Expressions which use the undamped natural modes can be

developed in an analogous manner as the damped-mode formulation

and result in an expression similar to eqs. (19) and (24) to (26).

Beginning with the second-order system of equations (eq. (1)), the

undamped or natural modes, 0r, are determined by solving the

following eigenvalue problem: ........

2
K0r=for MOr (27)

where for is lhe rth circular natural frequency.

The modes are normalized as follows:

T

0r M 0r = 1.0

so that

T 2
Or K Or = fO r

llence, the displacement response can be represented as

(28)

n

u(t)= _ 0rqr(t) (29)

r= 1
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Using eq. (29) and premultiplying eq. (1) by (_T results in

= Q(t) (30)

where

A=

and

f_2 [_ ]T-

where I#1 is the matrix of undamped eigenmodes, _2 is a diagonal

matrix whose diagonal terms can be represented as f22i = 002 and, for

proportional damping (where the damping matrix can be

represented as a linear combination of the mass and stiffness
= =

matrices), A is also a diagonal matrix whose diagonal terms can be

represented as Aii = 2_i00 i.

=

i

|

Assuming proportional damping and zero initial conditions, the

solution to eq. (30) can be written as

!

! I ;r00r(t-_:) Te sin 00dr(t-'l:)_)rQ(X) da:
qr(t) = 00dr6

(31)

where

_/ 2 )200dr = (Or - (_r00r
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The MAM is equivalent to the FDM of order one (assuming one

integration by parts of the convolution integral). This equivalence

can be shown by integrating eq. (31) by parts once with respect to

time, premultiplyingby _T, and substituting into eq. (29). This

results in:

Ill

u(t)___- _ _rqr(t)

r=l

m

r=l

--sin(todrt) + cos(todrt) }

i T
+--_ r Q(t))

0l r

-00rT_(}(x) -;rtOr(t-X)f;rt0r .+ Jr e "[_sl nOldr(t-'l: ) + cosCOdr(t-'l:)}d't: 1

(32)
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If all the modes are used in the second-to-last term of eq. (32), it

can be written as

-1

u(t) = K Q(t) +

_, r_(_)+ --- e

c.0r

m

I-_b T (0) -;rO_rt _;rOOrCr coQ e tCOd r

r=l

sin(o_drt) + cos(00drt)}

(33)

1
•[0_drSxncOdrt, t-X) + costOdr(t-'l: ) d'l:

/

Equation (33) can be shown to be equivalent to the MAM (ref. 11),

the expression of which is shown below:

m

E ' /-1 _ 2_r el(t)+ _ q(t)
u(t)=KQ(t)- _r [_r 00r

r=l

(34)
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Using Leibnitz's rule for differentiation of an integral and

differentiating eq. (31) with respect to time twice gives

!

1 I e - _ rco r(t-q:)
_]r(t) = COdr t_

T

{ -_rCOrSinCOdr(t-'l:)+ COdrCOSCOdr(t-'I:) }_rQ('l:) d'_

and , (35)

I

q'r(t) = _rQ(t) + COdr fi X

{(2(;,.COr)2-CO_sinCO,a,-(t-X)+ 2;,-CO,-CO,a,-cosCOd,-ft-Z)'_rQ(_:)d'_

Substituting eqs. (35) into eq. (34) and simplifying, results in

m

1T /u(t) _= K Q(t) + -Orco2rOr Q(t) + _rqr(t)

F= 1

(36)

Integrating the convolut!0n integral expression for qr(t) with

respect to time once, as was done earlier (eq. (32)), it is easy to

verify that the MAM (eq. (36)) is equivalent to the FDM of order one

(eq. (33)). This equivalence was also shown in references 13 and 37.
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2.4 Alternate Natural-Mode Formulation

An alternate natural-mode formulation is developed in a similar

manner as the alternate formulation of the first-order or damped-

mode formulation of Section 2.2. This alternate form is well-suited

for inclusion into existing computer codes. Assuming the forcing

function is C 2 differentiable, eq. (30) can be differentiated twice and

substituted back into eq. (30) to produce the following expression:

q(t) = -2[(1)]TQ(t) - £2-2A_-2[(_]T(_+ [_-2A_-2Ay/-2 . y/-2 -2],T{_

+[ -2 -2 A f-2Af-2A -2 A -2A-2 ] (3)+ q (t)

(4)
+[f-2ff-2 _ f-2Afi2Af-2]q (t) (37)

If eq. (31) is differentiated with respect to t and the expressions

for q(3) and q(4) are substituted into eq. (37), the entire

expression reduces to the following:
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K- 1u(t) = ^ _-2_T _ -I_) )Q(t) (K-IcK _) &_-2_x _-2_)T ) (_(t)

^A
+ _ q(t) " (38)

Equation (38) agrees with results presented in reference 39 and,

as shown in reference 39, is also valid for non-proportionally

damped structural systems. Assuming higher-order piecewise

differentiable forcing functions, the method above can produce

successively higher-order modal methods and, as such, is just

another formulation of the FDM.
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The expression for an Nth-order modal method can be expressed

as

N

u(t) = _ B 1, r- 1
r= 1

A AT\(r-I) A A

Al,r_lO )Q(t) + _ q(t) (39)

w here

and

[' -' ] E 'lBl,r] -K- CBI,r_ ! - K MB2,r_ 1 , Bo=
Br = B2, rj = Bl,r_l

IE ]Ar = l,r = - /_A l,r-I - A2,r-1 , A o =

2,r A l,r-
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2.5 The Dynamic-Correction , Method (DCM)

The dynamic-correction method (DCM), reference 39, assumes a

solution to eq. (2) in the form

Y(t) = Yp(t)+ Yc(t) (40)

where Yp(t) is a particular solution of eq. (2) and Yc(t) is the

complementary solution which represents the effects of initial

conditions. In modal form, Yp(t) and Yc(t) can be represented as

Yp(t) = [O] Zp(t)

and (41)

Yc(t) = [O] Zc(t )

where Zp(t) and Zc(t ) are the vectors of the particular and

complementary solutions to the modal coordinate equations (eq. (7)).

Using eqs. (6) and (41)

Y(t) = [*] Z(t)= [*][Z(t) - Zp(t)] + Yp(t) (42)
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The fundamental principle of the DCM is that, if available, an exact

particular solution to eqs. (2) and (7) can be used to approximate the

response (eq. (40)) using a reduced set of modes as shown below:

(43)

It can also be shown that in the limit as N goes to infinity, two

terms in equation (26) can be written as

iim
N-ooo

t-,]11) AA

- = (I) Zp (t)

and (44)

N_ oo = Yp(t)

Hence, if an infinite number _f integrations-by-parts are assumed

in the FDM or if the convolution integral vanishes (e.g., for a

polynomial forcing function of a lower order than the order of the

FDM) the FDM would be equivalent to the DCM ot" reference 39. Also,

if an exact solution to the convolution integrals (eqs. (8), (12), (14),

(33), etc.) exists and is used, the response can be calculated without

the errors caused by approximating the forcing function.
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Chapter 3

Error Norm Definition

It is important to develop reliable error estimates to evaluate or

compare, quantitatively, the various modal reduction methods. As

mentioned previously, classical modal superposition methods for

linear systems use a subset of the lower modes to approximate the

transient response. The error estimates used here compare the exact

or converged response with an approximation to that response,

obtained by using a subset of the eigenmodes. These error norms

are not intended to be used to predict, a priori, the number of modes

necessary for convergence and, hence, the time for termination of the

modal series. The convergence of each method (number of modes

versus the accuracy of the transient response) is measured by using

one of two relative error norms: a spatial error norm or a time-

integrated error norm.
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3.1 Spatial Error Norm

The spatial error norm, e, of an approximation to the temperature

vector is given by

a]( T - T a )T ( T - T a )
e x/ TTT

(45)

where T represents a converged solution for the temperature vector

and T a is an approximation which can be based on the first m

thermal modes.

3.2 Time-Integrated Error Norm

A time-integrated error norm, similar to that used in reference

39, can be used for the error in displacement u i and is shown below:

,[

J I ui(t) ua(t)l dt

ei (%) = X 100 (46)
%

_lui(t) I dt
0
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where £ i is the time-integrated error in the ith nodal displacement,

u i(t) is the exact response using all the modes of the system, and

uia(t) is the approximate response at node i using a subset of the

lower modes. The time, "_, selected as the upper limit of integration

was chosen to be 1: = 16_:/o_f, where 6of is the forcing function

frequency-
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Chapter 4

Structural Analysis

The following sections investigate the effect of various forcing functions,

load distributions, and damping levels on the transient response of a

uniform cross-section cantilevered beam, a uniform, simply-supported

multispan beam, and a spring-mass-damper system. The rate of

convergence of each of the methods (MDM, MAM, FDM, and DCM) is

expected to depend on the nature of the forcing function, the level of

damping and the time at which the response is calculated. Proportional

damping, when assumed, is constant for all modes. The forcing functions

are selected to investigate the effects of continuous forcing functions with

vanishing higher derivatives at various times (Q(T) = 1000(T 4 -T5)), the

effect of a discontinuous forcing function representing a unit step at time T

: 0 (Q(T)= _t(T)), a spatially discontinuous forcing function, and the effect

of a sinusoidal forcing function (Q(T) - sin (ofT), where T is the normalized

time, T = mot, and too is the normalizing frequency, mo = pAL 4

In addition, the effects of non-proportional damping are investigated. It is
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assumed that for all forcing functions, Q(T) = 0 for T < 0. Several example

problems, described below, are selected to evaluate the accuracy of each

method.

The spatial error norm, e (eq. (45)), is used to evaluate the various

modal methods. The effectiveness of this error norm in quantifying the

global error associated with each of the modal methods is demonstrated

for a cantilevered beam problem. The displacement distribution of a

cantilevered beam with a quintic varying tip load in time of Q(T) =

1000(T 4 - T5) lb. at a normalized time T -- 0.4 and for _i = 0.05 is shown

in figure l a for each of the various modal methods using only one mode.

The value of the spatial error, e, is also listed in the figure. Notice that as

the value of the error norm decreases, the distributions approach that of

the MDM using 30 modes, as indicated by the solid line. As shown in

figure l a, only one mode is used and for the MDM, e = 0.289 and

displacement errors are noticeable. However the MAM, FDM and DCM

results, having error norms of e = 0.0407, 0.0008, and 0.001, respectively,

are indistinguishable from the converged solution (MDM using 30 modes).

Similarly, for the normalized moment distribution (Fig. l b) the MDM (using

the first two modes) has an error e = 0.395, and the MAM, FDM and DCM

(all three using only the first mode) have errors of e = 0.1190, 0.0023, and

0.0033, respectively. As shown in figures l a and l b, there is a qualitative

improvement in the solution (response distribution) as the error norm e

decreases in magnitude.
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4.1 Proportional Damping

The equations of Chapter 2 are used to study several beam

example problems" a cantilevered beam with a tip loading and a

multispan beam with uniform and discrete loadings. These problems

use analytical expressions for the mode shapes _r(x)(refs. 17 and

41), mode-shape derivatives, and modal coordinates qr(t)(eq. 29).

The use of analytic_l solutions to calculate the transient response of

the modal coordinates, qr, eliminates the need for numerical

integration in time and associated numerical errors. As mentioned in

Chapter 2, the MDM and MAM can be considered as the FDM of order

zero and one, respectively. The results labeled FDM in the figures,

refer to a fourth-order version of the FDM which is obtained

assuming the forcing function has derivatives of order four or higher.

Modal vectors are calculated assuming 51 equally-spaced points

along the length of the beam. The solution formulation used is the

second-order or natural-mode formulation (Section 2.3) where the

convolution integral portion of the expression (e.g., eq. (33) and ref.

13) is evaluated analytically.
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Moment and shear forces were calculated from the following

equations"

M(x,t) -_
= El- _x 2

and (47)

S(x,t) = El Ox 3

For most cases, 30 modes are sufficient for an accurate solution

and, hence, 30 modes are used to approximate expressions such as

30

K _= _r d_r,

r= 1

30

K MK = _r _r

O)

r= !

, etc.

(48)

The multispan beam examples experience much slower convergence

and, hence, for this problem 50 modes are used to represent the exact

solution.
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4.1.I Cantilevered Beam with Tip Loading

The first problem studied is a uniform cantilevered beam loaded by a

tip loading. The first 30 natural frequencies of the beam are listed in

Table 1. The full 30 modes are used in expressions like eq. (48) to

represent the converged solution. The beam is subjected to various levels

of modal damping (same value for all modes) and a variety of loading

conditions.

For this problem the forcing function4.1.I.1 Quintic Time-Varying Load.-

is Q(T) = 1000(T 4 -TS), where T is the normalized value of time. This

problem was presented in reference 12 for the case of zero proportional

damping in all modes (_i = 0). This forcing function was chosen to evaluate

the various higher-order modal methods since the function or one of its

derivatives vanishes at various times: Q(T) = 0 when T = 1.0;

0(T) 0whenT=0.8;Q(T) =0whenT=0.6; Q(3tT)= 0 when T= 0.4; and

Q(4_T) = 0 when T = 0.2. This fact affects the convergence of the method as

will be shown subsequently. The forcing function is plotted as a function

of time, from time T = 0 to time T = 1.2, in figure 2a. The variation of tip

displacement as a function of time, for the case of zero damping (_i = 0), is

shown if figure 2b. As shown in figure 2b, the tip displacement decreases

to a minimum value of about -30.0 in. at 1.1 sec, shortly after the forcing

function changes sign at T = 1.0 (see fig. 2a). The moment error norm as a
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function of the number of the modes used in the modal summation is

shown in figure 3 for time T = 1.2 and _i = 0.05 in all the modes. The FDM

offers an ilnprovement in accuracy of several orders of magnitude in the

error norm over either the MDM or the MAM. The DCM (or in this case the

FDM of order six) results in over an order-of-magnitude increase in

accuracy over the FDM (of order four). The advantage of using higher-

order modal methods (MAM, FDM, or DCM) lies in the ability of those

methods to approximate the flexibility of the higher, but neglected, modes

with terms which are functions of the stiffness, mass, and damping

matrices and the forcing function and, in the case of the FDM and DCM, its

derivatives with respect to time (see, for example, eqs. (14), (26), and

(39)). The FDM and DCM offer higher-order approximations by using
-1

additional terms together with the pseudo-static response (K Q(T)). For

this problem FDM assumes N = 4 in eq. (39) and the DCM assumes N = 6

(hence fourth- and sixth-order, respectively). The moment error norm

(using five modes) is plotted as a function of time in figure 4. At T = 1.0,

the value of the moment error norm associated with the MDM is

equivalent to the MAM value because at time T = 1.0 , Q(T) = 0 and there is

no difference between MDM (N=0) and MAM (N=I) (comparing eqs. (29)

and (36)) and, hence, the MDM shows a sharp decrease in error at T = 1.0.

A similar decrease in error in the MAM qoccurs at time T = 0.8, which

corresponds to a time when 0 (T) = 0. These narrow regions where there is

a sharp increase in solution accuracy can be anticipated a priori from a

knowledge of the times at which the zeroes of the forcing function and its

derivatives occur.
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A comparison of displacement, moment and shear errors for _i = 0 and

times T = 0.6 and T = 1.0 are shown in figures 5a and 5b, respectively. The

error associated with the displacements is the lowest, the moment errors

are greater, and the shear errors are the largest. The order of accuracy

among the displacement' moment, and shear response is expected because

the moments and shears are functions of successively higher spatial

derivatives of the displacements (ref. 11). When T = 0.6 and _i = 0, the

MAM and FDM (N = 4) are equivalent (fig. 5a) because Q(T)= 0. When

T = 1.0, the MDM and MAM are equivalent (fig. 5b) for reasons mentioned

earlier. When T = 1.0 and _i = 0, the only difference between the MDM and

-1 ^ 2 -2_) ..MAM and the FDM lies in the term ( K MK _b_ _ _ )Q(T) (eq. (38)).

The difference between the methods is less at T = 1.0 (Q(T) = 0.) than at T =

0.6 (fig. 5a), where the difference between the methods lies in the term

-_ _, Q(T). The higher-order terms are functions of the

frequencies raised to successively higher negative exponents and, hence,

should have a negligible effect as higher modes are used providing the

time-function term does not grow proportionally.

The effect of damping on the accuracy of the response is shown in

figures 6a and 6b. Increasing the modal damping _i does not always

increase the accuracy of the MAM _as suggested in reference 11. For the

case of a uniformly loaded cantilevered beam Subjected to a step loading,

studied in reference I1, the accuracy of the MAM is enhanced in the

presence of damping as can be seen from eq. (33). Since all the derivatives

of the forcing function vanish, the only terms remaining are the pseudo-

-_rO_rt
static response and a term which is a function of e Hence, as _i
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increases, the relative importance of this term on the solution, as compared
-1

to the pseudo-static response term (K Q(T)), decreases and, therefore, the

accuracy of the MAM increases. For other forcing functions, there are

additional terms which increase in importance as damping increases (see,

for example, eq. (38) and ref. 13) and so the effect of _i on accuracy is

more complex. For example, for the case of a linearly time-varying forcing

function, the last term in eq. (38) decreases exponentially as the damping

increases (see eq. (33)); however, the second term increases proportionally

as _i increases (the third term vanishes since Q(T)= 0). If the magnitude of

the second term (eq. (38)) does not decrease with respect to the first term,

an increase in damping will not necessarily result in an increase in

accuracy as it does in the unit step function case. Notice that the FDM and

DCM are much more accurate than either the MDM or MAM for the range

of time and damping levels considered.

4.1.1.2 Step Load.- The step forcing function is discontinuous at time

T = 0 and hence the integration-by-parts of the convolution integral is

assumed to begin at time T = 0 +. Including the discontinuity in the

integration-by-parts results in jump conditions which must be included at

times during which there are discontinuities in the forcing function and its

time derivatives (ref. 38). The MAM, FDM, and DCM produce the same

results for a step forcing function because for T > 0, Q(T) is constant and all

its derivatives vanish (see, for example eq. (38)). As shown in figure 7, the

MAM, FDM, or DCM are more accurate than the MDM. A plot of moment

error, using the first 25 modes, as a function of time is shown in figure 8.
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Over the time range considered (T = 0.001-0.01) the moment errors of the

higher-order methods are about one-half the magnitude of the error using

the MDM at time T = 0.001. Also, as time increases, the error associated

with each method for a given number of modes used tends to decrease and

at time T = 0.01, the error using the higher-order methods is an order of

magnitude lower than the MDM.

For a discontinuous forcing function, such as a unit step, It(T)at T = 0,

the MDM exactly predicts a zero response at time T -- 0. The higher-order

methods (N > 1), however, require a summation of all the modes to predict

exactly a zero response or the inclusion of appropriate jump conditions.

Therefore, the MDM will produce qualitatively better results for times near

T = 0 or close to discontinuities. To calculate the transient response

accurately at very small times, a large number of modes is necessary. The

displacement distribution for a unit step loading at time T = 0,0002 and

_i = 0.05 which was calculated using 25 modes is shown in figure 9. As

expected, the MAM, FDM, and DCM results are equivalent and more

accurate than results obtained using the MDM. The moment error norm

associated with the higher-order methods is exceedingly large, at time

T = 0.0002, when fewer than five modes are used to approximate the

response (Fig. 10). If a sufficient number of modes is used to predict the

displacement distribution accurately (m > 24), the higher-order methods

appear to give better results.

Hence, for discontinuities in the forcing function and its time

derivatives, the higher-order modal methods should include the

appropriate jump conditions. The jump conditions are necessary because

the integration-by-parts of the convolution integral requires that the
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functions and their derivatives are continuous. If the jump conditions are

not accounted for in the higher-order modal methods, there will be

solution errors close to the time of the discontinuity as seen in the

previous problem.

4.1.2 Multispan Beam

The second problem studied is a simply-supported, uniform multispan

beam (10 equal-length spans) subject to two loading distributions and one

"_/ rad/sec, is used to

E1

forcing function. A nominal frequency, co0 = pAL4

normalize time, t, such that T = coot. The first 30 normalized natural

frequencies of the beam are listed in Table 2. An analytical solution for

the mode shapes and frequencies of multispan beams was obtained using

equations from reference 41. This problem was selected because the

frequencies are closely spaced (in groups equal to the number of spans, 10

in this examPle) and the chances of a neglected higher mode having a

considerable effect on the response is increased.

4.1.2.1 Uniform Quintic Time-Varying Load.- For this case the load

distribution is uniform and varys in time as Q(T) = 1000(T 4-T5), where T is

the normalized time. The moment distribution, normalized by the

maximum value of the moment M of the mu!tispan beam at T = 1.2 and

_i = 0.05 is shown in figure I1. The FDM and DCM are accurate even when

only one mode is used, whereas the MDM and MAM require 30 and 10
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modes, respectively, for acceptable accuracy (e < 0.01). The spatial

moment error norm, e, as a function of the number of modes for T = 1.2 is

shown in figure 12. The first nine modes are nearly orthog0nai to the
T

uniform load distribution, hence the modal load d_rQ(T ) is negligible and

has a negligible effect on the MDM response (see fig. 12). The 10th and

30th modes, however, have an effect on the solution as shown in figure 12.

The effect of these higher modes, however, is taken into account to some

degree by the pseudo-static response (note the MAM curve for m < 10) and

to a greater degree by the higher-order approximation of the neglected

modes used in the FDM and DCM methods. Hence, the FDM and DCM using

only one mode calculate a more accurate moment response than the MDM

using 49 modes or the MAM using nine modes. The spatial moment error

norm is Shown in figure _ 13 as a function of time for each method (using 10

modes). The accuracy of the FDM is at least tWo orders of magnitude

greater than the MDM and at least one order of magnitude greater than the

MAM. The DCM is, in general, more accurate than the FDM. The MDM and

MAM are equivalent at T = 1.0, as expected, because Q(T) = 0. At T = 1.0

the error associated with the MDM decreases an order of magnitude and

that associated with the MAM increases an order of magnitude as shown.

4.1.2.2 Discrete Quintic Time-Varying Load.- For this loading distribution,

the solution does not converge in a step-like manner as in figure 12 but

does so gradually and at a slower rate as shown in figure 14. This

convergence occurs because the loading distribution is not nearly

orthogonai to many mode shapes and hence the associated modal load,
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T

qbrQ(T ), is not negligible as it was for the uniform distribution. Once again,

the FDM and DCM converge more rapidly than either of the other, lower-

order modal methods. The DCM converges faster than the FDM for T > 0.2.

The DCM and FDM both experience similar error at times T = 0.2 shown in

figure 15. As time progresses, the DCM appears to be more accurate than

the FDM. Once again, the accuracy or these higher-order modal methods

(FDM and DCM) are several orders of magnitude greater than the lower-

order methods (MDM and MAM). In addition, the accuracy of the higher-

order methods tends to increase as T increases (see fig. 15).
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4.2 Non-Proportional Damping

4.2.1 Two Degree-of-Freedom Spring-Mass-Damper System.-A simple,

two-degree-of-freedom spring-mass-damper problem (see fig. 16) with a

sinusoidal forcing function was analyzed to compare the accuracy of the

MDM, MAM, FDM, and DCM. For this problem M! =M 2= 1Kg, spring

constants K 1 = K 2-- 1000 N/mm, and damping constant C = 1 N-s/mm. This

problem was also investigated in reference 39 and included in that

reference are the particular solutions for polynomial as well as sinusoidal

forcing functions. The sinusoidal forcing function, sin(o_ft), is applied to

the second mass as shown in figure 16. The natural frequencies are _1=

19.54 rad/s and to2= 51.17 rad/s. The system is proportionally damped (A

is diagonal in eq. (38)) if ct = K1/K 2 (ref. 42). Hence, proportional damping

occurs for a value of t_ = 1.0. The accuracy of each method is assessed by a

time-integrated error norm (eq. 46) where ui(t) is the calculated response

a
using all the modes and ui(t) is the approximate response using a subset of

the modes. Results were calculated using both the real and damped modes

(eqs. (26) and (39), respectively). The modal coordinates, q and Z, were

calculated by numerically integrating equations (7) and (30), respectively,

using a Runge-Kutta method. For this problem, the FDM used was of order

four (N = 4 in eqs. (26) and (39)). The time, x, selected for integrating the

error was chosen to be t = 16rc/o_f.

=
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Results of tile error as a function of the forcing frequency using one real

mode for the proportionally-damped case (ct =1.0) is shown in figure 17.

In general, the forcing function frequency must be lower than the highest

natural frequency used in the approximate modal response for accurate

results. As shown in figure 17, the accuracy increases as the order of the

modal method increases. The results for the lower range of frequencies are

shown more clearly in figure 18, which is an expanded error scale of figure

17. The results for the FDM (N=4) and DCM are similar and more accurate

than the lower order methods such as the MDM (N=0) and the MAM (N=I)

for to f < 20 rad/s. For to f > 20 rad/s, the DCM remains slightly more

accurate than the FDM; however, as the forcing frequency approaches the

second natural frequency (to f= 51.17 tad/s), all methods produce

inaccurate results. Results using one real mode or two damped modes are

identical for the proportionally-damped case.

Results for the non-proportionally-damped case (o_ = 20)using two

damped modes are shown in figure 19. Results are similar to the

proportionally-damped case with the exception that the DCM exhibits

surprisingly good results at forcing function frequencies close to the second

natural frequency. This result is unexplained at present and is believed to

be fortuitous and, hence, it is recommended that all modal methods should

include modes whose frequencies exceed the frequency of the forcing

function. A comparison of the damped-mode solution (using two damped

modes (eq. (26)) and the undamped solution (using one real mode (eq.

(39)) is shown in figure 20 for the non-proportionally-damped case (ct =

20). As shown ill figure 20, the damPed-mode solution using two damped

modes (dashed lines) produces more accurate results than those using only
49



one real mode (solid lines). The damped-mode solution for the FDM and

I)CM are nearly equivalent and result in the smallest error for frequencies

as large as 30 rad/s. Hence, it may be beneficial, in some cases, to use the

damped modes to obtain a more accurate solution.

The FDM produced results that are similar to the DCM results for forcing

frequencies below the first natural frequency. A comparison of the modal

methods for a forcing frequency _f = 10 rad/s is shown in figure 21. Once

again, the higher'order modal methods result in more accurate solutions.

The large relative errors near "c = 0 are due to the zero initial conditions

which cause the denominator of eq. (46) to approach zero at x = 0. As _ _

explained in reference 13, the increase in accuracy with the order of the

modal method is due to the addition of terms which are functions of the

generalized stiffness and mass matrices and the force vector and its time .

derivatives. These additional terms approximate the effect of the higher

modes which were neglected in the modal summation.

!

=

4.2.2 Multispan Beam with Discrete or Uniform Damping and Uniform

Loading - A multispan beam (five spans) with discrete or uniform damping

and uniform loading, is shown in figure 22. A similar problem was also

studied in references 22 and 23. This problem was chosen because it not

only includes the effect of nonproportional damping, but also the effect of

discrete damping. The load history was changed in the present study, to a

uniform quintic varying load.

Ibs/in. 2, density p = .28 lbs/in.3,

sec/in, and C 2 = 1.2 lbs-sec/in.

The m0duius of elasticity E = 10 x 105

and damping constants are C 1 = 0.008 lbs-

The finite element method was used to
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discretize the problem in space. Three conventional beam elements (ref.

23) per span were used to represent the five-span beam as shown in

figure 22. Results of moment error for the case of discrete damping at

time t = 1.2 sec are shown in figure 23. Similar to previous results, the

higher-order methods are consistently more accurate; the FDM and DCM

have errors e < 0.01 using only one mode, whereas the MAM and MDM

require 5 and 15 modes, respectively, for comparable accuracies. The DCM

is shown to be an order of magnitude more accurate than the FDM at time

T = 1.2. Similar results for a proportionally damped case where _i = 0.05

are shown in figure 24. For the case of proportional damping, the DCM and

FDM results are very similar; for the case of discrete damping (fig. 23), the

DCM results are almost an order-of-magnitude better than the FDM.
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Table 1. beamfrequencies

pAL 4

of a cantilevered

rad/sec ).

MODE
NUMBER

NORMALIZED
NATURAL FREQ.

_/_o

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O

3.52
22.03
61.70

120.90
199.86
298.56
416.99
555.17
713.17
890.73

1088.12
1305.26
1542.13
1798.74
2075.08
2371.17
2687.00
3022.57
3377.87
3752.92
4147.70
4562.22
4996.49
5450.49
5924.23
6417.71
6930.93
7463.89
8016.59
8589.02
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Table 2. Natural frequencies of a simply-supported multispan

beam (10 spans) mo = pAL4 rad/sec .

MODE
NUMBER

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
2O
21
22
23
24
25
26
27
28
29
3O

NORMALIZED
NATURAL FREQ.

¢o/¢o o

9.87
10.15
10.94
12.17
13.70
15.42
17.25
19.07
20.75
21.91
39.48
40.07
41.72
44.11
46.90
49.96
53.12
56.23
58.95
60.95
88.83
89.78
92.23
95.74
99.87

104.25
108.88
113.29
117.13
119.97
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a canlilevered beam with tip loading using spatial
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damping ratios _i = 0.05).
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simply-supported multispan beam (ten equally-spaced

spans) subject to a uniformly-distributed load varying

with time as Q(T) = IO00(T 4 -T 5) lbs./in. (where

damping ratios _i = 0.05).
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Figure 14. Comparison of moment errors of a simply-supported

multispan beam (ten equally-spaced spans) subject to

two concentrated loads spaced about the center of the

first span and varying in time as Q(T) = 1000(T 4 -T 5)

lbs., where T = 0.4 and damping ratios _i = 0.05.
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Figure 15. Variation of moment errors as a function of time, using

10 modes in the modal summation, for simply-

supported multispan beam (ten equally-spaced spans)

subject to two concentrated loads spaced about the

center of the first span and varying in time as Q(T) =

1000(T 4 - T 5) lbs., where damping ratios _i = 0.05.
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Two-degree-of-freedom spring-mass-damper system.
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Comparison of various modal methods as a function of
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degree-of-freedom problem where (x =1.
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Modal Methods (2 damped modes)
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Figure 19. Comparison of various modal methods as a function of

forcing frequency for a non-proportionally-damped

two-degree-of-freedom ,roblem where o¢ = 20.
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freedom problem where 0_ = 20.
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Figure 21. Comparison of various modal methods as a function of
time for a non-proportionally-damped two-degree-of-

freedom problem where _ = 20. and (of = 10. rad/sec.
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Figure 22. • Five-span beam with applied uniform, quintic time-

varying load, Q(T) = 1000(T 4 -T 5) lbs./in., and discrete

dampers.
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Comparison of moment errors of a simply-supported
multispan beam (five equally-spaced spans) subject to

a uniformly-distributed load varying with time as
Q(T) = 1000(T 4 -T 5) lbs./in., at T = 1.2 and with

discrete damping.
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Figure 24. Comparison of moment errors of a simply-supported

multispan beam (five equally-spaced spans) subject to

a uniformly-distributed load varying with time as

Q(T) = 1000(T 4 -T 5) lbs./in., where T = 1.2 and

proportional damping with damping ratios _i--0.05.
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Chapter 5

Thermal Analysis

Previous attempts at using mode superposition methods to solve

transient, linear thermal problenas (refs. 31 to 35) have been unsuccessful.

Thermal problems typically -_ exhibit a wide spectrum response where very

high frequencies are excited and, hence, a prohibitively large number of

"thermal modes" are necessary for _in accurate solution. Results of

references 32 and 33 indicate that-Lanczos vectors can be effective

reduced"basis:_veCi_rs _- for Solving linear _and non-linear transient thermal

problems. Sifice the accuracy-of ._the Lanczos _wctors JS comparable to that

of the for structural dynamic problems, it was expected that higher-

order methods, such as the MAM, FDM, and DCM, would be effective in

solving complex thermal problems also.

Higher-order modal methods, developed in Chapter 3 are used to solve a

simple linear, transient heat transfer problem of a rod heated at one end.



The higher-order methods will be shown to be effective in significantly

reducing the number of modes necessary to represent an accurate

response.

5.1 Rod Heated at One End

The thermal problem selected to study is similar to that presented in

reference 32. The rod is heated at one end and the temperature at the

opposite end is constrained to zero (see fig. 25). The forcing function is a

ramp heat load at one end which ramps up from zero to a peak value at

time t = 10 sec and down to zero at time t = 20 sec as is shown in figure

25. The value of temperature at the unheated end is constrained to 0. The

spacial error norm (eq. 45) is used to evaluate each of the modal methods.

A total of twenty equally-spaced finite elements were used to model

the problem. Temperature distributions in the rod, calculated using the

MDM, are shown in figure 26a. The exact solution, using all 20 degrees-of-

freedom or modes, is illustrated by the solid line. At time t = 10 sec, the

peak value of temperature is 400 at x/L = 0. An approximate solution

using only 5 thermal modes underpredicts the maximum value by 50

percent (Tma x = 200) and results in unrealistic oscillations in the

temperature distribution. If 10 and 15 modes are used, maximum

temperatures are underpredicted by 25 and 12 percent, respectively. This

error illustrates the inadequacy of the MDM in accurately predicting

transient temperatures using a reduced set of "thermal modes"
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Temperature distributions, calculated using the MAM, are shown in figure

26b. The MAM overpredicts maximum temperatures by over 25 percent

when four modes are used in the solution. Once again, the temperature

distribution oscillates, as shown by the dashed line, when an insufficient

number of modes are used in the solution. The MAM requires

approximately eight modes for a reasonable solution to'this problem. The

FDM also displays oscillations in the temperature distribution when an

insufficient number of modes is used in the solution, however, results

converge to an accurate solution using only five modes (fig. 26c). The

effectiveness of using higher-order modal methods for reducing the size

and computational effort of thermal problems is illustrated in figure 27.

The FDM or DCM require about 28 percent of the number of modes as

compared to the MDM and about 63 percent of the number of modes as the

MAM for an accurate thermal response. The ability of the higher-order

modal methods to predict the transient thermal response accurately using

very few degrees of freedom or modes, highlights the potential usefulness

of these methods in reducing the computational size and effort required to

solve transient thermal problems.

E
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One-dimensional heat conduction problem:
at one end.
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Figure 26.

a) Mode-displacement method (MDM)

Temperature distribution along a rod heated at one
end at time t = 10 sec.
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Chapter 6

Concluding Remarks
S

A unified means for creating higher-order modal methods is presented

which results in algorithms that have increased accuracy when solving

transient, linear, thermal and structural problems. This new method is

called the force-derivative method (FDM) because it is based on terms

which are functions of the forcing function and its time derivatives.

Several variations are presented for deriving the FDM for both a first-

order system of equations and a second-order system. One representation

results in expressions for either a first- or second-order system, which are

well suited for inclusion into existing finite-element computer programs.

The FDM unifies previously presented, lower-order methods such as the

familiar mode-displacement method (MDM) and mode-acceleration method

(MAM) of structural dynamics and is shown to be equivalent to another

mode summation =method, the dynamic-correction method (DCM), under

certain conditions. In addition to structural dynamics, it is shown that the

higher-order modal methods can be used to effectively reduce the size of
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transient, linear thermal problems, where previous attempts, using the

MDM, were fruitless. Approximate methods, such as the reduced basis

methods, which are highly desirable for several reasons: they can

drastically reduce the problem size and, hence, storage requirements and

enable the solution of very large problems; and they can decrease the

computational time and enable large optimization problems to become
tractable.

These newly developed higher-order methods have been evaluated

solely on the basis of their ability to decrease the number of degrees-of-

freedom necessary to achieve a desired or predetermined accuracy.

Accuracy has been determined quantitatively, using spatial and time-

integrated error norms. The accuracy and convergence histories of various

modal methods are compared for both uncoupled (proportionally-damped)

structural problems as well as thermal problems and coupled (non-

proportionally-damped) structural problems. The example problems

which assume proportional damping include: a cantilevered beam

subjected to a quintic, time-varying tip load and a step tip load and a

multispan beam subjected to both uniform and discretely-applied quintic

time-varying loads. Examples of problems with non-proportional damping

include- a simple two-degree-of-freedom spring-mass system with discrete

viscous dampers subjected to a sinusoidally-varying load and a multispan

beam with discrete viscous dampers subjected to a uniformily-distributed,

quintic time-varying load. The thermal example problem is a rod

subjected to a linearly-varying tip heat load at one end with a constrained

constant temperature at the opposite end.
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The example problems were chosen to evaluate the effect of" 1)

spatially and temPorally discontinuous forcing functions, 2) forcing

functions with vanishing higher derivatives, 3) discrete (non-proportional)

damping and uniform proportional damping in all modes, 4) using

"damped" or first-order eigenmodes compared to using "undamped" or

second-order formulation, 5) the level of viscous damping, 6) closely-

spaced frequencies (which occur in the case of repeated structural

elements such as the multispan beam example), and 7) using higher-order

modal methods in solving transient thermal problems.

In general, the FDM was found to be more accurate than either the MDM

(zeroth-order method) or the MAM (first-order method) and results in a

converged solution using fewer modes. The FDM, assuming an order of

four, was less accurate than the DCM which is shown to be equivalent to

the FDM under certain circumstance. The DCM, however, assumes a

particular solution for the transient portion of the solution exists. For

problems in which there are a large number of closely-spaced frequencies

(e.g., large truss-type structures and multispan beams), the FDM is very

effective in representing the effect of the important, but otherwise

neglected, higher modes. Results for a multispan beam (10 equally-spaced

spans) and a uniform, quintic time-varying load indicate the FDM and DCM

methods both produce accurate results using only one mode as opposed to
t

the MDM which required 49 modes and the MAM which required nine

modes for similar values of error. The MDM and MAM results converge in

a step-like manner with very little increase in accuracy as one to nine

modes are used in the solution. This step-like convergence occurs because

the first nine modes are orthogonal or nearly orthogonal to the uniform
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loading distribution and hence produce a negligible modal load. For the

case of discretely applied loads, the convergence is not step-like; however,

the FDM and DCM methods still converge using many fewer modes than

the MDM or MAM methods. More modes are required for convergence of

the shear forces in the beam than for moment convergence and more

modes are required for accurate moment predictions as compared to

displacements. This is to be expected since the stresses are functions of

the spatial derivatives of the displacements and the process of

differentiation tends to magnify errors already existing in the

displacement calculations.

At response times close to discontinuities in the forcing function and/or

its derivatives, the MDM gives qualitatively better results than the higher-

order methods, when few modes are used in the approximation. However

when a sufficient number of modes are used to represent the

discontinuity, the higher-order methods produce accurate results using

fewer degrees of freedom. Implementation of the FDM or other higher-

order methods requires the inclusion of appropriate jump conditions at the

times when discontinuities occur. It was also found that increasing the

modal damping levels does not always increase the convergence rate of the

MAM or other higher-order methods as was previously thought.

A first-order or "damped mode" solution was found to be effective in

solving a non-proportionally damped two-degree-of-freedom problem.

Results of this two-degree-of-freedom spring-mass-damper system subject

to a sinusoidal forcing function indicate that, for the proportionally

damped case, a solution using the first-order or "damped" form of the

equations and two damped modes produces identical results as the second-
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order or "undamped" form using one natural mode. Hence, there is no

advantage in using a damped or first-order form to solve a proportionally-

damped problem. However, for the non-proportionally damped problem,

the use of two damped modes produces more accurate results than using

only one mode and the second-order form. The DCM has the lowest

percentage error of all the mode-superposition methods over the

frequency range of 2 to 50 rad/sec. The FDM produced similar results to

the DCM up to a forcing frequency of about 35-40 rad/sec. For the

proportionally damped problem, all the methods were inaccurate near a

frequency of 50 rad/sec (close to the second natural frequency of the

system). A multispan beam with discrete dampers (non-proportionally

damped) was studied and the results of the study indicate that the FDM

and DCM converge using only one mode as compared to 15 for the MDM

and 5 for the MAM.

The higher-order modal methods, such as the FDM, were found to be

very effective in solving a simple one-dimensional thermal problem of a

rod heated at one end. Previously, modal methods have been inefficient in

solving thermal problems because the nature of the problem requires the

inclusion of almost all the modes for an accurate solution. The ability of

the FDM to approximate the effects of the higher, but neglected, modes

results in an accurate solution using only five modes, out of a total of

twenty modes for the rod problem, as compared to the MDM which

required 18 modes and the MAM which required eight modes for an

accurate solution.

b
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